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SUMMARY 

The paper presents some investigations in developing schemes based on a splitting of the Euler 
equations into a pure convective part and an acoustic part (pressure term) combined with a 
multidimensional treatment on unstructured triangular meshes. Two decompositions are considered 
and are compared with classical approaches on two-dimensional inviscid flow simulations. 
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1. INTRODUCTION 

In the past years intensive research on computational fluid dynamics has been devoted to the 
development and use of numerical discretizations of systems of conservation laws using upwind 
formulations. Current methods are based on one-dimensional arguments as approximate Riemann 
solvers and thus suffer from excessive dissipation (see e.g. References 1-3). On unstructured meshes 
made of triangles or tetrahedra one can benefit from specific properties even though higher-order 
approximations based on one-dimensional first-order concepts can have desired properties (preserving 
linearity). Attempts at multidimensional formulations have become truly successful these last two years 
(see Reference 4 for an enlightening review and Reference 5 and 6 for some achieved formulations). 
The extension to systems still requires some improvements and remains somewhat unnatural (simple 
wave decomposition). An intensive activity has arisen on that research topic. 

Meanwhile, approximation schemes based on a splitting of the Euler equations into a pure 
convective part and an acoustic part (pressure term) have been proposed and have proved to be very 
promising for compressible flow computations. The main contributions in this direction are the upwind 
flux-splitting scheme AUSM developed by Liou7 and the related CUSP formulation proposed recently 
by Jameson,' as well as an earlier formulation' combining some SUPG approximation for the 
convective terms with a centred approximation of the pressure term. This paper deals with the 
investigation of combining some AUSM-type formulation with a multidimensional treatment on 
unstructured triangular meshes. The idea is to treat the pure convective term of the AUSM approach as 
a set of scalar convection equations where the velocity acts as the convective vector. One can then 
apply some of the accurate scalar advective schemes. Distributive schemes proposed in Reference 5 
which are second-order-accurate, non-oscillatory and have compact stencils can be chosen. The 
pressure term is treated independently. 

Two decompositions will be considered giving two flux vector splittings. Results of subsonic 
bidimensional flows around aerofoil profiles computed with this new approach will be compared with 
those obtained with classical approaches. Particular attention will be devoted to entropy deviation to 
identify the accuracy of this method. 
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2.  LAGRANGE-GALERKTN FORMULATION 

For the sake of simplicity we shall consider bidimensional spatial discretizations, but most of the ideas 
presented here can be extended to 3D. The following models will be under consideration: 

conservation law wt + f q ( w ) )  = 0, w E R, (1) 

hyperbolic system W, + 0'. F( W)) = 0, W E Rd, d 2 1. ( 2 )  
Let F be a triangulation of the computational domain Q c R2 with boundary r of unit normal Gr. 

We denote by Ta current element, in the case of a triangle by i;: the inward integrated normal opposite 
to node Ni, by K(i) the set of neighbouring nodes of node Ni and by supp(i) the support of the basis 
function 4i associated with node Ni. Let Vf be a set of piecewise polynomial functions from R2 with 
values in Rd that are continuous. Further, the basis of v;f is the set of functions 4j satisfying the 
Lagrange interpolation conditions. Let us consider the following abstract family of schemes for the 
spatial approximation of the hyperbolic system (2) :  

where F(W) is considered as an element of v;f (group representation) and 4 is a test function. The 
spatial scheme is then described as 

This scheme reduces to the Euler forward time integration, but it is not explicit when the Lagrange- 
Galerkin mass matrix is not diagonal. However, a mass-lumped variant can prove to be interesting, 
which is written at each node Ni as 

+ 4 V  . F (  W")dv = 0. ( F  +i4jdv) ' n ' '  At - w' SR 

As far as structured meshes are concerned, a stability result (CFL condition) can easily be found by 
Fourier analysis. Schemes (4) and ( 5 )  have been tried by many authors for PI or QI elements. A very 
short P2 experiment is also presented in Reference 10. 

3. FINITE VOLUME GALERKIN 

We first notice that Lagrange-Galerkin methods may be interpreted as finite volume schemes in some 
extended sense; indeed, the divergence operator can be written as (boundary terms excluded) 

It is easy to check that {A}  is a skew matrix; note that all the diagonal elements of such a matrix are 
necessarily equal to zero ( 2 i i  = 0,Vi). Furthermore, since constant vectors belong to the kernel of 
{A}, we have 
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The right-hand side is a finite volume flux integration between node Ni and node Nj with the 
following mean normal vector (elementary flux): 

Further, we recognize a centred difference integration, since a pure arithmetic mean is taken between 
{ F I i  and {F}j. Let us write the above scheme ( 5 )  with Hi denoting the flux term 

Lemma 1 

For any Galerkin approximation with Lagrange continuous interpolation on the divergence 
operator, an equivalentjnite volume formulation can be expressed as a relation on fluxes between a 
given degree of freedom and its neighbours: 

Instead of applying a centred difference scheme to evaluate the fluxes, one may consider a Riemann 
problem with wi and w, as left and right states and ;v for defining the interface (normal to qq). Let us 
notice that the projection of fluxes on the qq-direction reduces the problem to the one-dimensional 
case. Then a Godunov extension of the Lagrange-Galerkin scheme can be defined as 

(J@)i = C Q R i e m y K ,  q,qq). (9) 
J#i  

Lemma 2 

In the case of an advection equation (1) withf(w) = ?.Aw, the whole family of upwind Lagrange- 
Galerkin schemes satisjes the positivity preservation when advanced with the mass-lumped RKI 
scheme under the following CFL condition: 

Remark I 

In the particular case of linear triangular elements (PI approximations) a geometrical interpretation 
that f q  is the integration of the normal vector between two can be given. It has been 

adjacent cells Ci and C, if these cells are delimited by the medians of the neighbouring triangles: 

(q5if4j - 4,f4;)dv. (1 1) s suPP(i)ns~PPo‘) 
q. .  = fdo = 

acme, -lJ 

The resulting scheme can be rewritten as 

find W E V,d such that 
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where H(i1) = @A%, 4, fg). The formulation takes the form of looping over each side in the mesh 
and sending contributions to the appropriate nodes. This gives an edge-based data structure which is 
the most compact that can be used for unstructured meshes. In the following section this formulation 
will be derived from a finite element Galerkin approximation in the case of triangular or tetrahedral 
elements. In the case of stretched triangles or tetrahedra the angle between the integrated normal vector 
and the corresponding edge can become very large, which can create excessive numerical diffusion. 
Studies to investigate new definitions of modified, better-suited cells have given significantly improved 
results in some test cases.I3 One possible method is to define an ‘optimized’ dual mesh by a cell 
construction minimizing the angle between directions of upwinding and edge directions for each 
element (as sketched in Figure l(b)). We can notice that both constructions are identical for equilateral 
triangles, whereas the second one tends towards quadrangular cell type in the case of right-angled 
triangles (as shown in Figure l(b)). It can also be observed that the centred part and the dissipative part 
of the approximate Riemann solver flux can be independently computed using either the Galerkin or 
the optimized dual mesh, giving a large family of schemes. 

Remark 2 

Q1-Lagrange approximations are richer in interpolation and can degenerate easily from 3D to 2D 
and from 2D to ID (solutions are identical). For this case we note that f g  does not rely any more on a 
tessellation. In particular, beside edges, diagonals of quadrilaterals also support flux integration. 

Remark 3 

In all the above approaches, boundary integrals over r are computed in order to take into account 
the physical boundary conditions. 

4. MUSCL EXTENSIONS 

We describe now extensions of previous schemes to second-order accuracy. They can be viewed as 
perturbation of the finite element scheme by (essentially) a numerical viscosity in terms of fourth-order 
derivatives. Indeed, following van Leer,14 we can replace in the approximate Riemann solver the nodal 
values Wi and Wj by higher-order interpolations: 

where A W,  is an approximation of A W at node N,. Several choices are possible (see Reference 15 for 
the PI case). In order to possibly obtain a hlly upwind scheme, we suggest the ‘upwind element 
construction’,’6 where W, and W,, are values at the interface aC, which have been interpolated by 
using upwind gradients as described below. 

We define the downstream and upstream triangles z, and T I  for each segment [N,, 43 as shown in 
Figure 2. Let the centred gradient be AKJ = A Fl where $is one of the triangles having N, and 4 
as vertices. I 

Figure l(a). Classical Galerkin cell Figure l(b). Modified cell definition 
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Figure 2. Downstream and upstream triangles for the segment [Ni, Nil 

A good procedure in terms of accuracy is to use limiters on characteristic variables. We compute 
these variables by the transformation taken at the segment's midpoint. If we denote by I7, the 
eigenvector matrix corresponding to the flux, then the values at the interface needed to compute the 
flux Z$) are given by 

where Lev and Lcji are the diagonal limiting matrices introduced to reduce numerical oscillations of the 
solution and to provide some kind of monotonicity property. We rely on the Van Albada limiter14 
associated with the Fromm scheme corresponding to K = 0, combining monotonocity and second- 
order accuracy. 

However, this construction is still rather heuristic in this 2D context and rigorously non-oscillating 
schemes are hardly derived. We refer to Reference 17 for an attempt at a multidimensional extension of 
Harten's incremental condition. 

5. DISTRIBUTIVE FORMULATIONS 

In this section we restrict our analysis to linear finite elements on triangles (PI).  Distributive compact 
schemes introduced by Struijs et aL5 have proved to give an appropriate frame to derive accurate 
monotone schemes. Consider a scalar conservation equation. If we come back to the Galerkin 
formulation given in equation (5) and formally apply the group representation 

the mass-lumped variant can then be rewritten in the compact residual distributive formulation 

where the residual %(T) is given by 

Assuming now a continuous piecewise linear approximation of w (PI elements), the above formulation 
suggests defining a general class of distributive scheme of the form 

3 #+' - $ 
- C B*,~R( ;~ ,  T ,  w) = 0, w i t h z  B ~ , ~  = I ,  

T i= 1 vi At 
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where the residual is integrated using the linear representation of w: 
3 

R ( i ,  T ,  w) = area(T)i. f w  = kiwi, 
i= 1 

with 

This formulation has been advocated in References 5 and 18 in order to derive upwind schemes 
based on advection speed where only downwind nodes receive a contribution. To have 
simultaneously positive and linearity-preserving approximations, the schemes have to be non-linear. 
Two particular schemes (the so-called N-scheme which is linear and first-order-accurate and PSI which 
is non-linear and close to second-order accuracy) constructed in Reference 18 have been selected 

k,?((wi - wf)R(& T , w ) ) -  

Clyl kj’((wj - wL)R(n’, T,w))- 
/ I ~ ) R ( ~ ,  T ,  w) = R ( i ,  T, w). 

Remark 4 

Whereas boundary conditions are assumed in a weak form through boundary integrals in the 
previous formulations, no such contribution appears any more in the present approximations (in fact, 
boundary integrals are part of the boundary elementary flux evaluation). Boundary conditions will then 
be imposed strongly. 

6. GENERALIZED FLUX VECTOR SPLITTING 

We have shown that a Lagrange-Galerkin approximation of a general hyperbolic system can be 
interpreted in other formulations which lead to different integration schemes. In this section we 
combine the above formulations applied to an adequate splitting of the Euler equations of gas 
dynamics. Consider the two-dimensional equations of gas dynamics where the state vector and the 
fluxes are given by 

w =  (i) =(FW, Fx= ( p g ; ) ,  F y =  (tip). 
where p is the density, u’ = (ux, uy) is the velocity, E is the total energy per unit mass, p is the pressure 
and H is the stagnation enthalpy. If y is the ratio of specific heats, then 

p = ( y - l ) ( p E - $ ) ,  H = E + - ,  P speed of sound c = J 
P 

In a steady flow the stagnation enthalpy H is constant, equal to He 
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We want to investigate schemes based on a separation of convective and pressure fluxes as 

F = F u + F p ,  
where Fp contains the pressure term only, which have been proposed by Liou' and Jameson' to derive 
new upwind concepts. Two decompositions can be considered: 

Firstly we consider the first decomposition with convective speed 2. Since this field is not 
divergence-free, the derivation rule gives 

Applying to the first three scalar equations a distributive scheme as proposed in the previous section, 
since the variables GL') are assumed to be linear on a possible approximation (FVSl) could be 

for I = 1,3, (20) 

with 

Then we use the stagnation enthalpy to update the energy. 
In order to work with a divergence-free convection speed, it seems attractive to work with the second 

decomposition based on pu. Firstly we replace the energy equation by a pseudo-unsteady equation 
given by 

a ( m  - a(PHu,) W H U Y )  +-----. -_- 
a t  ax  ay 

We can now derive a scheme (FVS2) based on convective speed pu' with the state vector 
w = ( P ,  PUX, pup pWT and 

2 -- piidv : 
pu - area ' I  ( T )  

In this case the update in density is computed via the equation 
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Remark 5 

To complete the description of both formulations, one needs to define the approximate flux function 
mi?. Following the pressure fluxes proposed by Liou and Jameson, assuming a proper zone of 
dependence, we chose 

mUpwind( w,, w,, Z) = p t  + p i ,  with p+  = f in the subsonic region. 
FP 2 

7. NUMERICAL RESULTS 

As a first investigation we have focused on subsonic test cases to evaluate the behaviour of the above 
schemes. In all test cases new schemes are compared with a classical upwind scheme 
(FVG + MUSCL) based on an Osher approximate Riemann solver (called the reference scheme). 
Firstly, simulations of flow around an NACA 0012 aerofoil are presented. A regular mesh (Figure 3) 
has been used (3200 nodes). Entropy distributions at the wall are presented in Figure 4(a) for the 
reference scheme and in Figure 4(b) for the FVS 1 + PSI scheme. The overall level of entropy is quite 
similar. The spurious entropy generation is more confined in the leading edge region for the reference 
solution than for the second one. 

Then a subsonic flow around an RAE 2822 aerofoil is simulated at M ,  = 0.30 and tl = 2". A rather 
coarse mesh (1 200 nodes with an aspect ratio of 200 near the body) is first considered. A solution 
obtained with FVSl + N (Figure 33)) is compared with the reference one (Figure 4(a)). In both 
solutions spurious entropy is generated in the leading edge region, whereas the splitting scheme gives a 
better level at the windward side. A similar entropy level is present in the strong expansion of the 
leeward side. 

The same test case is then performed using a fine mesh aimed at computing viscous flows (Figure 
6). The mesh aspect ratio is more than 1000 in the first layer of boundary elements. Four solutions are 
presented, obtained respectively with the reference scheme (Figures 7(a) and 8(a)), FVSl + N (Figures 
7(b) and 8(b)), FVSl + PSI (Figures 7(c) and 8(c)) and FVS2 + PSI (Figures 7(d) and 8(d)). Globally 

Figure 3. NACA 0012 aerofoil grid 
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Figure 4(a). Wall distribution of entropy (FVG scheme), NACA 0012 (ME = 0.63, a = 2") 
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Figure 4(b). Wall distnbution of entropy (FVSl + PSI), NACA 0012 (M,  = 0.63, a = 2 4  

L 

Figure 5(a). Wall distribution of entropy (FVG scheme), RAE 2822 coarse grid (ME = 0.30, a = 2") 

1055 

LF==n>- -- I ' x/c  

Figure 5(b). Wall distnbution of entropy (FVSl + N), RAE 2822 coarse grid (M, = 0.30, a = 2") 
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Figure 6. RAE 2822 aerofoil fine grid 

the pressure coefficient distribution C, is comparable for the four simulations. We can notice that the 
maximum value tends to decrease for the FVS splitting schemes. For the entropy plots the same 
conclusions as in the previous test case can be made concerning the weak entropy level generated at the 
windward side by the FVSl schemes, whereas the leading edge entropy is uniformly convected. The 
FVS2 and reference schemes give comparable solutions. It is noticeable that the influence of the scalar 
scheme (N or PSI) on the solution is weak; this could indicate that the dissipation is mostly controlled 
by the pressure term. 

8. CONCLUSIONS 

We have investigated the possibility of relying on multidimensional upwinding for inviscid 
compressible flow simulation by taking advantage of convectiodacoustic splitting. The resulting 

Figure 7(a). Wall distribution of C, (FVG scheme), RAE 2822 fine grid ( M ,  = 0.30, ci = 2") 
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Figure 7@). Wall distribution of C, (FVSI + N), RAE 2822 fine grid (M, = 0.30, a = 2") 

Figure 7(c). Wall distribution of C, (FVSI + PSI), RAE 2822 fine grid (M,  = 0.30, ct = 2") 
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Figure 7(d). Wall distribution of C, (FVS2 + PSI), RAE 2822 fine grid (M, = 0.30, a = 2") 
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Figure 8(a). Wall distribution of entropy (FVG scheme), RAE 2822 fine grid ( M  = 0.30, a = 2") 

Figure 8(b). Wall distribution of entropy (FVSI + N), RAE 2822 fine grid ( M ,  = 0.30, a = 2") 

Figure 8(c). Wall distribution of entropy (FVSI + PSI), RAE 2822 fine grid (M,  = 0.30, a = 2") 

Figure 8(d). Wall distribution of entropy (FVS2 + PSI), RAE 2822 fine grid (M,  = 0.30, a = 2") 
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schemes have been applied to subsonic flow simulations and compare well with classical upwind 
schemes. This gives an attractive frame for potential improvements. Further improvements are required 
in order to achieve a reliable formulation. 

1. As reported above, strong conditions have been applied to impose the no-slip condition at the 
surface. This treatment certainly affects the accuracy of the method. Alternative techniques that 
could be used have recently been reported in Reference 18. 

2. The present treatment of the pressure term is not satisfactory. The approximation still relies on a 
classical monodimensional upwinding which is certainly responsible for the excessive remaining 
dissipation as discussed in the previous section. Further investigations to derive a more accurate 
formulation have to be performed. 

3, We have restricted our analysis to subsonic flows. The proposed frame of splitting formulations 
should handle transonic flows as well. 
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